67 research outputs found

    Double-Free-Layer Stochastic Magnetic Tunnel Junctions with Synthetic Antiferromagnets

    Full text link
    Stochastic magnetic tunnel junctions (sMTJ) using low-barrier nanomagnets have shown promise as fast, energy-efficient, and scalable building blocks for probabilistic computing. Despite recent experimental and theoretical progress, sMTJs exhibiting the ideal characteristics necessary for probabilistic bits (p-bit) are still lacking. Ideally, the sMTJs should have (a) voltage bias independence preventing read disturbance (b) uniform randomness in the magnetization angle between the free layers, and (c) fast fluctuations without requiring external magnetic fields while being robust to magnetic field perturbations. Here, we propose a new design satisfying all of these requirements, using double-free-layer sMTJs with synthetic antiferromagnets (SAF). We evaluate the proposed sMTJ design with experimentally benchmarked spin-circuit models accounting for transport physics, coupled with the stochastic Landau-Lifshitz-Gilbert equation for magnetization dynamics. We find that the use of low-barrier SAF layers reduces dipolar coupling, achieving uncorrelated fluctuations at zero-magnetic field surviving up to diameters exceeding (D100D\approx 100 nm) if the nanomagnets can be made thin enough (1\approx 1-22 nm). The double-free-layer structure retains bias-independence and the circular nature of the nanomagnets provides near-uniform randomness with fast fluctuations. Combining our full sMTJ model with advanced transistor models, we estimate the energy to generate a random bit as \approx 3.6 fJ, with fluctuation rates of \approx 3.3 GHz per p-bit. Our results will guide the experimental development of superior stochastic magnetic tunnel junctions for large-scale and energy-efficient probabilistic computation for problems relevant to machine learning and artificial intelligence

    Magnetic order in nanoscale gyroid networks

    Full text link
    Three-dimensional magnetic metamaterials feature interesting phenomena that arise from a delicate interplay of material properties, local anisotropy, curvature, and connectivity. A particularly interesting magnetic lattice that combines these aspects is that of nanoscale gyroids, with a highly-interconnected chiral network with local three-connectivity reminiscent of three-dimensional artificial spin ices. Here, we use finite-element micromagnetic simulations to elucidate the anisotropic behaviour of nanoscale nickel gyroid networks at applied fields and at remanence. We simplify the description of the micromagnetic spin states with a macrospin model to explain the anistropic global response, to quantify the extent of ice-like correlations, and to discuss qualitative features of the anisotropic magnetoresistance in the three-dimensional network. Our results demonstrate the large variability of the magnetic order in extended gyroid networks, which might enable future spintronic functionalities, including neuromorphic computing and non-reciprocal transport.Comment: 10 pages, 6 figure
    corecore